Ziel von Network Science ist die Entwicklung von Methoden und Werkzeugen für die Sammlung, Verarbeitung und Analyse von relationalen Daten (z. B. aus sozialen Medien oder Sensordaten), die als Netzwerk modelliert werden können. Netzwerkmodelle erleichtern die Erklärung und Vorhersage der Struktur und Dynamik von sozialen Systemen.
Unsere Forschungsschwerpunkte im Bereich Network Science
- Messung von Face-to-Face-Interaktionen über RFID-Sensoren in verschiedenen Umgebungen (z. B. auf wissenschaftlichen Konferenzen) und Kombination dieser Daten mit Umfragedaten zu Verhalten und Persönlichkeitsmerkmalen
- Netzwerke von Interaktionen zwischen Nutzenden von Online-Plattformen (wie Wikipedia, Reddit, Twitter), statistische Modellierung von Mustern von Online-Interaktionen (in Bezug auf Informationsverhalten, Kooperation, Konflikt usw.)
- Generative Netzwerkmodelle, die darauf abzielen, das Verhalten von Teilpopulationen zu erklären und vorherzusagen (z. B. die Zusammenarbeit zwischen weiblichen und männlichen Forschenden)
- Kulturelle Netzwerke, die geografische Regionen durch gemeinsame Online-Präferenzen miteinander verbinden
- Mehta, Aditya, Arun Paudyal, Atul Sharma, Zyanya Ambros, Ipek Baris, Jun Sun, Oul Han, and Akram Sadat Hosseini. 2020. "Does the First Mover Advantage Exist on GitHub?" doi: https://doi.org/10.48550/arXiv.2006.02193.
- Kunegis, Jérôme, Jun Sun, and Eiko Yoneki. 2023. Guided Graph Generation: Evaluation of Graph Generators in Terms of Network Statistics, and a New Algorithm. ArXiV Preprint. doi: https://doi.org/10.48550/arXiv.2303.00635.
- Kunegis, Jérôme, Jun Sun, Pawan Kumar, Anna Samoilenko, and Giuseppe Pirró. 2023. SynGraphy: Succinct Summarisation of Large Networks via Small Synthetic Representative Graphs. ArXiV Preprint. doi: https://doi.org/10.48550/arXiv.2302.07755.
- Sun, Jun, Steffen Staab, and Fariba Karimi. 2018. "Decay of Relevance in Exponentially Growing Networks." In Proceedings of the 10th ACM Conference on Web Science (WebSci '18), doi: https://doi.org/10.1145/3201064.3201084.
- Sun, Jun, Jérôme Kunegis, and Steffen Staab. 2016. "Predicting User Roles in Social Networks using Transfer Learning with Feature Transformation." In 2016 IEEE International Conference on Data Mining Workshop (ICDMW), doi: https://doi.org/10.1109/ICDMW.2016.0026.
Titel | Start | Ende | Förderer |
---|---|---|---|
Entwicklung und Bedeutung sozialer Beziehungen im Kontext der Covid-19-Pandemie
(LoneCovid)
|
2023-02-01 | 2026-01-31 | Bund |
Knowledge Technologies for the Social Sciences
Stellvertretender Abteilungsleiter
FAIR Data
Teamleiter
Stellvertretender Abteilungsleiter
FAIR Data
Teamleiter
Vorstandsbereich
Scientific Coordinator for Digital Behavioral Data
Scientific Coordinator for Digital Behavioral Data