GESIS - for a research-based infrastructure
Research output at GESIS
- Dahou, Abdelhalim Hafedh, Mohamed Amine Cheragui, Amin Abdedaiem, and Brigitte Mathiak. 2024 (Forthcoming). "Enhancing Model Performance through Translation-based Data Augmentation in the context of Fake News Detection." In ACLing 2024: 6th International Conference on AI in Computational Linguistics., Procedia Computer Science.
- Neuert, Cornelia. 2024 (Forthcoming). "How do alternative gendered linguistic forms affect response behavior in surveys?" Field Methods.
- Gangopadhyay, Susmita. 2024. "Investigating Characteristics, Biases and Evolution of Fact-Checked Claims on the Web."
- Pforr, Klaus. 2024. "There goes the "Auswahlbezirk": Estimation of "White-Flight"-Effects using the German Microcensus ." Research Colloquium "Comparative Stratification Research" 2024, Ludwig-Maximilians-Universität München, Munich, 2024-06-18.
- Sen, Indira, Mareike Wieland, Katrin Weller, and Martin Gerlach. 2024. "Do People Perceive Differences in the Readability of Wikipedia Articles?" 11th Annual Wiki Workshop, Wikimedia Foundation, 2024-06-20.
- Ell, Theresia, Lydia Repke, and Henning Silber. 2024. "Personal and Technology-Based Communication and Its Impact on Mental Health From a Network Perspective." Sunbelt Conference 2024, Heriot-Watt University, Edinburgh, 2024-06-24.
- Repke, Lydia, Theresia Ell, and Henning Silber. 2024. "Beyond Distancing - An Examination of Social Networks and Mental Health in the Covid-19 Era." Sunbelt Conference 2024, Heriot-Watt University, Edinburgh, 2024-06-24.
- Abdedaiem, Amin, Abdelhalim Hafedh Dahou, Mohamed Amine Cheragui, and Brigitte Mathiak. 2024 (Forthcoming). "FASSILA: A Corpus for Algerian Dialect Fake News Detection and Sentiment Analysis." In ACLing 2024: 6th International Conference on AI in Computational Linguistics, Procedia Computer Science.
- Dahou, Abdelhalim Hafedh, Mohamed Amine Cheragui, Amin Abdedaiem, and Brigitte Mathiak. 2024 (Forthcoming). "Enhancing Model Performance through Translation-based Data Augmentation in the context of Fake News Detection." In ACLing 2024: 6th International Conference on AI in Computational Linguistics., Procedia Computer Science.
- Volle, Jonas, Andreas Schmitz, Haiko Lietz, and Richard Münch. 2024. "Group formation in science between homogenization and differentiation: Modeling the development of U.S. and German sociology." International Journal of Sociology online first. doi: https://doi.org/10.1080/00207659.2024.2357908.
Ein wesentliches Merkmal von GESIS ist, dass das Institut insbesondere bei den Daten, für die es auch die Erhebung verantwortet, sehr hohe Ansprüche und Standards an die Qualität der bereitge- stellten Daten anlegt. Daher ist es für GESIS zentral, eigene Beiträge zur Untersuchung und Verbes- serung von Aspekten der Datenqualität zu leisten. Die Forschung in den GESIS-Forschungsbereichen trägt deshalb direkt zum Schwerpunkt Datenqualität bei. Dies betrifft sowohl Umfragedaten als auch digitale Verhaltensdaten und relevante Metadaten. Datenqualität umfasst Aspekte der (a) Kor- rektheit und Repräsentativität von Daten und (b) Nutzbarkeit und FAIRness von Daten. Beispiele für (a) sind die Vollständigkeit, Korrektheit, Provenienz der Repräsentativität von Daten, während (b) Aspekte wie Findbarkeit, Qualität der Dokumentation, Aufbereitung oder die Interoperabilität von Daten und Metadaten berücksichtigt. Damit wird eine wichtige Voraussetzung dafür erfüllt, dass die Bearbeitung inhaltlicher Fragestel- lungen (Substantive Research) auf Basis dieser Daten zu validen Ergebnissen führt.