
 

 

 GESIS Guides to Digital Behavioral Data #8  |  1  

 

 

Overview of Approaches for Collecting Data from 

Online Platforms 

FELIX SOLDNER 

GESIS – Leibniz Institute for the Social Sciences 

Publication date: April 24, 2024; Version 1.0 

In this guide, we discuss why collecting data from online platforms that are accessible 

through the internet is important to researchers. This is followed by an overview of web 

data collection methods, explaining how these methods differ and pointing to their advan-
tages and disadvantages. We also provide criteria on how to decide which data collection 

method should be used for a certain task, and briefly touch on data quality aspects and 

legal considerations, which are essential to be clarified before collecting online data.  

This guide is written for readers who want to get a first overview of possible data collection 

approaches and have to decide which methods might be best suited for their project. 

Keywords: data collection, online data, platform data, web scraping, web API, static 

websites, dynamic websites 

1 Why collect data from online platforms? 

With the emergence of the internet, the way people communicate, socialize, and interact 

has changed and significantly shifted to digital spaces such as online platforms, including 

social media, e-commerce websites, and online forums. As a result, social scientists have 

increasingly turned to online platforms as a data source for studying human behavior 

(Edelmann et al., 2020; Lukito et al., 2023). One reason online platforms are important for 
social and other scientists is the accessibility to vast amounts of data – also called digital 

traces or digital behavioral data (DBD) – which were previously difficult to obtain at 

scale. Such user-generated data on online platforms can be leveraged for large-scale 
analyses to gain insights into various social phenomena, including political attitudes, 

GESIS Guides to Digital Behavioral Data 

                  #8 



 

 

 GESIS Guides to Digital Behavioral Data #8  |  2  

 

personal or group communication behavior, consumer preferences, social network 

structures or societal issues. 

Online platforms also provide a unique opportunity for researchers to study human be-

havior in natural settings. Compared to laboratory settings, which may suffer from artifi-

ciality or lack ecological validity, online platforms offer a virtual environment for studying 

social interactions on the web. Thus, digital behavioral data can be valuable for studying 

complex social phenomena that may be difficult to replicate in controlled settings. 

Furthermore, online platforms offer the possibility of real-time data collection and ana-

lysis. Since digital technologies allow for the continuous monitoring of user behavior, 

researchers can quickly and easily collect data on changes in attitudes or behaviors over 

time and capture unexpected or unanticipated events as they unfold. Such data capture 

and analyses can be particularly valuable for studying fast-moving phenomena, e.g., 

social movements or online reactions to events, which may be challenging to capture 

through traditional research methods. 

While data from online platforms are highly valuable for researchers interested in inve-

stigating human behavior, interactions, and communication dynamics, obtaining such 

data requires technical methods that can be challenging. We will overview those 

methods and discuss their usefulness. 

2 Finding existing datasets or collecting your own data? 

Before starting any data collection, existing datasets should be examined and explored 

to determine if it is necessary at all to collect new data. Often, datasets of the platforms 

or phenomena intended to be studied already exist. By exploring already collected data, 

time-consuming (and sometimes costly) data collection procedures can be avoided. 

Besides performing traditional web searches, datasets specifically related to social 

science research can be found, e.g., at GESIS search (search.gesis.org) or through: 

 Google dataset search (datasetsearch.research.google.com) which is a search 

engine used to find publicly available data for research. 

 The open science framework (OSF; osf.io), Zenodo (zenodo.org), Kaggle 

(kaggle.com) and Figshare (figshare.com) are platforms supporting scientists to 

provide openly accessible research, including papers, data, and methods (e.g., 

code). 

 The Inter-university Consortium for Political and Social Research (ICPSR; 

icpsr.umich.edu). 

 Organizations, such as the Pew Research Center (pewresearch.org) or the 

International Social Survey Program (ISSP; issp.org). 

Previously collected data may not always be suitable for the individual use case that a 

researcher has in mind, e.g., the previous data cover the wrong temporal scope, do not 

https://search.gesis.org/
https://datasetsearch.research.google.com/
https://osf.io/
https://zenodo.org/
https://www.kaggle.com/
https://figshare.com/
https://www.icpsr.umich.edu/web/pages/
http://www.pewresearch.org/
http://www.issp.org/


 

 

 GESIS Guides to Digital Behavioral Data #8  |  3  

 

include the needed variables, or they do not contain the intended platform of interest, so 

new data is indeed needed. 

For these cases, and when online data must be newly collected, two approaches are 

widely adopted: 

1. Web application programming interfaces (APIs).  With web APIs, platform data can 

be quickly accessed automatically and structured. APIs are mostly provided by the 

platforms themselves and access is often tiered, with free and paid options for which 

user often must go through a vetting process. How the API functions can also be 

opaque (e.g., how the data from the API is sampled or moderated). 

2. Web scraping.  Web scraping is conducted via programs that capture the content of 

websites (‘scrapers’), which can be complex due to the various and continuously 

changing structures of websites. Thus, scrapers often require more time to be imple-

mented and maintained but leave researchers with a large degree of freedom on what 

and how to collect data. With a custom scraper, the data collection procedure is also 

very transparent. 

The following sections will describe these two data collection approaches and discuss 

their advantages and disadvantages. 

3 Online data collection approach 1: Web APIs 

Unlike a user interface intended to facilitate communication between a person and a 

computer, an application programming interface (API) facilitates communication bet-

ween computers. Initially, APIs were not intended for data collection but rather for facili-

tating communication between computers more efficiently through reusable pre-written 

code. APIs often have written documentation about the code they provide and their func-

tions (e.g., what they do and how to use them). For example, programming packages in 

Python (e.g., Pandas, NumPy) or in R (e.g., Caret, Shiny) are APIs, which help program-

mers speed up their coding by providing a set of pre-programmed functions that perform 

commonly needed operations; they save the individual researcher from the need to write 

everything from scratch. 

Similarly, web APIs extend functionality across the internet by providing functions to 

clients (computers accessing information from a server) and the user to interact with a 

server more efficiently. Figure 1 provides a relational overview of an API development 

and usage as an example. APIs exist for many social media platforms (e.g., TikTok, Twit-

ter, YouTube), news outlets (e.g., Guardian, BBC, Financial Times, New York Times) or 

other platforms (e.g., Google search, Imgur, Shazam). 

A quick web search will help determine if APIs exist for the platform of interest. However, 

APIs are also often not intended for research, but for facilitating the interaction with a 

platform. For example, eBay and Amazon provide APIs that allow an easier integration of 



 

 

 GESIS Guides to Digital Behavioral Data #8  |  4  

 

their services into other products (platforms, Apps, etc.). With their APIs, external 

platforms could show the latest offer on specific products on Amazon or integrate an 

eBay product search into a shopping App. In these cases, Amazon and eBay benefit from 

the use of their API, which is not always true when data is collected for research purposes. 

Similarly, YouTube provides an API, which can also be used to organize content for an 

account (e.g., uploading videos). 

If an API exists most often the platforms themselves provide them, to ensure what and 

how data is shared. Although APIs are more stable than custom scrapers, they also 

change over time in how they can be accessed (e.g., paid tiered options), and what 

information they provide. 

 

                   Figure 1: Relational setup of using an API 

API functionalities 

Some APIs can be accessed through traditional web browsers by manually entering the 

API call in the URL (i.e., sending a request to a server for information). Since each web API 

call requires a command, manually using a web browser would be too inefficient for 

collecting large amounts of data; it is mostly used for smaller projects or demonstration 

purposes only.  

Web APIs are usually accessed through wrappers that facilitate the interaction with the 

API through more common programming languages, such as Python or R. Essentially, API 

wrappers are built on top of the APIs to further simplify the communication with the API 



 

 

 GESIS Guides to Digital Behavioral Data #8  |  5  

 

and are convenient for the users because they easily implement the automation of 

requests (e.g., through for- or while-loops) and handle the received information within a 

programming environment.  

Most APIs have restrictions on data types and how much data they provide. Such 

restrictions are often tiered, with free access providing the least amount of data, while 

higher tiers provide a wider variety of data types and larger amounts of data. Higher tiers 

then can be used through making payments, which can be a one-time payment or for a 

recurring period (e.g., monthly), or will be based on the amount of data requested (e.g., 

number of API calls, tokens received). Thus, determining what type of data is available 

and how much is essential before collecting your data. Before switching to a paid option, 

free access should be used to test the data collection pipeline in order to reduce costs. 

Web APIs that do not have free versions often provide virtual environments (i.e., sand-

boxes), which enable users to test their code before paying for any services. However, 

before being allowed to use API access, users must often undergo a vetting procedure in 

which the project’s goals and procedures must be described and submitted to the API 

providers. The duration of receiving approval depends on the vetting procedure and the 

API provider and should be considered during the project planning. How to apply for API 

access depends on the platform and is mostly described on their website. However, users 

mostly have to apply for a developer account by filling out an online form, which will be 

manually reviewed (i.e., vetted). Once the application is approved, the user receives 

access to a dashboard for API settings, in which an API key can be generated. The key 

needs to be specified when interacting with the API and serves as an identifier of the user 

and the associated project. The dashboard is often used for payments and tracking the 

API usage (i.e., for specifying costs). 

4 Online data collection approach 2: Web scraping 

The terms web scraping, web harvesting, or screen capture all describe the procedure 

of collecting content from web pages. The idea is that all the content which is visible 

when visiting the website is collectible. While manually collecting the information from a 

web page is possible (e.g., downloading images, copy-paste text, saving the entire HTML 

site), most scraping procedures are automated with the help of stand-alone software or 

through custom programmed scrapers in Python, R, or other programming languages. 

In most cases, not all the information on the webpage is of interest for the task, and only 

some parts should be collected. Thus, a webpage must be parsed, entailing a systematic 

capture of the content, which can be saved in a structured format (e.g., in a data frame). 

For example, if the intention is to collect product reviews, their exact placement within 

the webpage must be determined for the implemented program, allowing for systematic 

storage (i.e., assigning a variable in the data frame with only the review text). 



 

 

 GESIS Guides to Digital Behavioral Data #8  |  6  

 

Saving and parsing information from a webpage are two steps that are interchangeable 

in order. While some prefer to parse the webpage before saving any information, others 

prefer to save the entire webpage and then parse its content offline. Both approaches 

have their merits. Parsing a webpage directly without saving the entire page will require 

less local storage capacity and is often preferred when only specific content is needed, 

and the scraping procedure is expected to be short. However, parsing webpages directly 

can be disrupted by site maintenance, which can change the underlying structure (e.g., 

HTML layout) of the web pages. Such changes occur frequently, and they are not always 

apparent on the website. Structural changes in the sites’ code can break the defined 

parsing procedure and lead to data gaps. 

Therefore, saving the entire webpage before parsing is often preferred since parsing 

issues can be resolved retroactively without the threat of missing information that was 

deleted or changed on the webpage. However, saving an entire webpage, including ima-

ges, will require more local storage space. A small-scale scraping test should be conduc-

ted before starting the main scraping to calculate the storage space needed for the entire 

project. 

Web scraping implementations 

Web scraping can also be accomplished through stand-alone software or online services. 

However, most tools require payments which can vary depending on the scale of the 

scraping project. Utilizing such tools is often achieved through point-and-click opera-

tions by navigating to the websites from which information should be collected and 

defining which elements of the websites should be scraped (titles, texts, images, etc.). 

For example, a browser plugin might be implemented to facilitate such an approach. In 

some cases, services offer scrapers accessible with custom APIs (often associated with 

increased costs), making data better accessible. 

Alternatively, a custom scraper can be implemented in Python, R, or another program-

ming language. Although building a scraper requires programming knowledge, all the 

necessary tools are publicly available without fees. The advantage of building your own 

scraper is that the programmer has complete control of what is collected and how, 

making changes to the collection procedure easier to implement. Moreover, a custom 

scraper allows for high transparency, which is essential within a research setting. Further-

more, many programming packages for scraping web content facilitate the programming 

of scrapers and can be found with a quick web search. Some helpful packages are 

Beautiful Soup (crummy.com/software/BeautifulSoup) or Selectorlib (selectorlib.com). 

Building a web scraper, a) requires an understanding of webpage structures (i.e., HTML 

structure), and b) the target webpage should be inspected before beginning to build a 

scraper. Understanding the webpage structure is necessary when specifying the infor-

mation location that should be collected by the scraper. By right-clicking with the mouse 

anywhere on a webpage and selecting “inspect”, the structure of the web page can be 

https://www.crummy.com/software/BeautifulSoup/
https://selectorlib.com/


 

 

 GESIS Guides to Digital Behavioral Data #8  |  7  

 

made visible through a menu, as shown in Figure 2. By using the “inspector” function, it 

is possible to hover over any web element (title text, price, vendor name, etc.) and locate 

the information within the HTML structure. 

 

Figure 2: Screenshot of a product offer on eBay with the webpage’s underlying HTML  

structure shown. 

After gaining a basic understanding of the web page’s structure, the next steps for pro-

gramming a scraper can be taken, which are outlined in the following. 

Programming a web scraper follows a structure, which can change depending on 

whether parsing is performed before or after downloading the web content. However, a 

few steps are essential, such as (i) creating a list of websites that are intended to be scra-

ped, (ii) looping through and downloading the website’s content (with or without 

parsing), and (iii) saving the downloaded content in a database or data frame (e.g., SQL, 

CSV) if you want to analyze the data further [1]. 

Creating a list of websites can be done manually by copy-pasting the websites’ URLs into 

your programming script. However, such an approach is time-consuming and should be 

automated if possible. Alternatively, only the base URL should be specified (e.g., 

ebay.com), and the remaining URLs should be generated automatically. Similar to in-

 
1  In some projects, the goal is to collect only the raw data (e.g., HTML files) without bringing the content 

into a structure to maximize the possibilities of how the data can be used by others. 



 

 

 GESIS Guides to Digital Behavioral Data #8  |  8  

 

specting the website’s HTML structure, understanding the URL structure is also impor-

tant. Usually, the URL follows a clear pattern for pagination and other common opera-

tions (e.g., selecting the size and color of products on a shopping platform). Thus, after 

some testing (i.e., clicking through the webpage), a pattern most often emerges that can 

be used to generate the URLs automatically (e.g., looping through pages of search 

results). Another practice is to automatically find all links on the website of the current 

URL and add them to the list of URLs to be scraped. By proceeding like this, the entire 

webpage can be collected. However, managing duplicates becomes important in order 

to avoid unnecessary scraping, which can be time-intensive and might incur increased 

computational load to the server on which the website is hosted. Saving duplicates will 

also artificially increase the amount of data that is saved. 

After determining how to obtain the necessary URLs, the scraper needs to collect the 

content of interest (including parsing the website) or the entire page. In either case, the 

data should be saved in a local folder structure, allowing easy (automated) access to the 

data in later stages of the project. Locally saving the data includes unparsed (e.g., HTML 

files) and parsed (e.g., CSV or Excel files) data. The data should be continuously saved 

while scraping the content from the website to prevent unnecessary computer memory 

usage and data loss if the scraping procedure unexpectedly stops (e.g., due to errors in 

the programming scripts, internet failure, or server issues). Once the web data collection 

is completed, the data can be saved into a data frame or merged if already parsed. 

Scraping procedures may change depending on the type of website, and additional tools 

might be required to build a scraper. For instance, websites might be static or dynamic 

in loading displayed content. The differences between static and dynamic websites and 

their impacts on building a web scraper will be discussed next. 

Scraping static vs. scraping dynamic websites 

Content on websites can be generated statically or dynamically. Content generated sta-

tically is present whenever the requested URL is loaded, i.e., the content displayed when 

visiting the website without further user interaction. Content that is generated dynami-

cally means that the website displays new content due to interactions with it, such as 

clicking or scrolling. For example, an endless newsfeed (e.g., on X/Twitter or Facebook), 

which allows for continuous scrolling, is dynamically generated. A reloading of the web-

site is not required. Some content may appear dynamic but is already present (but 

hidden) on the website (e.g., a drop-down menu). A broad range of interactions can elicit 

dynamic content creation from the client or server side, including cookie settings, IP 

address, time of day, screen size, mouse scrolling, hovering, clicking, and more. Pop-ups 

or suggested auto-completions (e.g., in web search engines) are content that can be 

generated dynamically. 

Potential challenges (including missing data) can be anticipated and resolved by testing 

if and how content is dynamically generated (i.e., interacting with the website). For 



 

 

 GESIS Guides to Digital Behavioral Data #8  |  9  

 

example, some websites do not fully load their content without user interactions and 

require a different approach than traditional scraping methods can provide. In such 

cases, user interactions with the webpage can be augmented by automating the browser. 

All user interactions that elicit dynamic content creation (e.g., scrolling, clicking) can be 

automated with software such as Selenium (selenium.dev), which facilitates automation 

with common programming languages.  

5 Which approach should I use? 

Deciding which method to use is often heavily guided by practical reasons and is often 

determined by the extent to which a web API is in place and usable. First, whether an API 

for the intended platform is available should be checked. If no API or already created 

datasets exist, web scraping will likely be the only option (unless a data-sharing agree-

ment with the platform can be negotiated). Second, if an API exists, not all necessary 

variables for the data collection project might be available, which should be determined. 

Third, the API restrictions and the amount of data needed might not be compatible, 

which should be assessed, and if any payments would be required. 

After working out all the practical issues, any (dis-)advantages of using an API or web 

scraper can be considered. However, some platforms with APIs complicate the usage of 

custom scrapers by making the website structure overly complex, which can increase the 

time needed to build a scraper or completely forbid scraper usage (we will discuss some 

legal considerations in section 7). Thus, deciding which method to use might not always 

be in the hands of the data collectors. Assuming both an API and a scraper are possible, 

their advantages can be considered. 

Advantages and disadvantages of both approaches 

The big advantages of using web APIs are their ease of use and quick deployment. Since 

APIs are streamlined and platform-specific, they are reliable and well-suited for continu-

ous and large-scale data collection. APIs do not tend to break easily, and it is less likely 

that code changes will become necessary, which allows for a prolonged usage. In turn, 

web APIs have data (type) limits that can be very restrictive or costly. Since API deve-

lopers define how data can be collected, researchers often face issues with replicability. 

For example, if changes are made to the availability of data types or the amount of collec-

tible data, replicability and continuation of projects can be complicated. APIs may also 

not be sufficiently documented, and the platform’s sampling procedure on how they 

provide platform data through the API may be opaque, which complicates statistical 

evaluations and makes conclusions less reliable. Receiving API access requires vetting by 

the company the API maintains, for which an application is often required, stating the 

purpose of the projects. In some cases, APIs are also only available for specific users (e.g., 

eBay vendor API). 

https://www.selenium.dev/


 

 

 GESIS Guides to Digital Behavioral Data #8  |  10  

 

The big advantage of web scrapers is that they are customizable, allowing for data 

collection that would otherwise not be possible. With a custom scraper, data collectors 

have high control over what is being collected. However, a custom scraper also entails 

higher time investments in programming and might be further exacerbated, depending 

on the website structure (e.g., dynamic content), which is one of the major drawbacks of 

web scrapers. Furthermore, custom scrapers require continuous maintenance, assessing 

whether the collected data is complete and debugging any errors that arise.  

The (dis-) advantages of the two approaches are summarized in Table 1. 

      API     Custom scraper 

Advantages 

 

• easy and fast to employ 
• reliable (does not break easily) 

• high control on data collection 
• allows data collection when no API is  

available 
• supports reproducibility and transparency 

of research 

Disadvantages

 

• data (type) limits 
• pay to access data 
• possibly opaque data sampling 
• often requires vetting of users 
• dependent on API developers or  

providers 

• high initial programming load 
• continuous maintenance needed 
• vulnerable to breaking when website 

changes 
• the platform’s terms and conditions might  

prohibit scraping 

Table 1: Overview of advantages and disadvantages of APIs and custom scrapers. 

 
 
How to decide in practice 

Re-using existing datasets is the most time and cost-efficient way of obtaining 

data and should be preferred before collecting new data. Contacting a platform to 

request data is also an option.  

Whenever new data collection is needed, using a web API is most likely preferable 

because building and maintaining a custom scraper is time intensive.  

Scrapers should also not be regarded as an option in (most) cases, when an API 

access application has been denied, since the platform providers already indica-

ted that they do not want to share their data.  

If no API exists or the API does not provide the correct data, a scraper is an option. 

There are freely available tools that support building a custom scraper. 



 

 

 GESIS Guides to Digital Behavioral Data #8  |  11  

 

6 Data quality considerations 

The different approaches to collecting data from online platforms may influence the 

quality of resulting datasets and the results of downstream analyses. While it is difficult 

to assess the quality of a dataset as a result from a specific collection approach, there are 

error frameworks like the TED-On (Sen et al., 2021) that support researchers in their 

reflection on the data collection process, raising various potential data quality issues. In 

any case it is worthwhile and timesaving to consider such pitfalls early in the research 

process and to document your data collection process carefully. This will also support 

the transparency and replicability of your research. 

One common issue is that the different collection methods usually have different con-

straints regarding the temporal availability of data. For APIs, there might be a restriction 

imposed directly by the platform, making only the most recent contents or activities avai-

able. While theoretically, this restriction does not apply to customized web scrapers, they 

might still run into difficulties with the collection of comparable content or longitudinal 

data when the structure of the webpage changes over time. The TES-D (Fröhling et al., 

2023), an error-oriented documentation approach for online platform data, encourages 

researchers to systematically explore and document the consequences of their research 

design choices, hoping to raise awareness for such common data collection issues. 

With regard to a collected dataset’s quality, in particular its completeness, the direct 

comparison of datasets resulting from different collection approaches is helpful. 

For data collected via web scraping, data quality concerns include incomplete data 

extractions due to changes of the website’s URL pattern and HTML layout over time or 

due to technical difficulties with the continuous operation of the crawler, as well as the 

potential influence of the crawler setup (e.g., IP address location) on the displayed and 

collected data.  

For web API data collections, the most common concerns include the opacity of the 

underlying sampling mechanisms that determine which data is available through the API 

(Tromble 2021), and the difficulties associated with properly sharing the data with other 

researchers, this being desirable for peer review and reproducibility or in the spirit of 

open science. 

7 Legal considerations 

Consideration should be given to the legal aspects of collecting web data. Accessing data 

through a web API is less likely problematic if the platform the data is collected from also 

maintains the API. Collecting data might not always be allowed if the API is built by others 

than the platform providers or if a custom web scraper is employed. Three basic checks 

can be performed to determine whether automated data collection is possible. 



 

 

 GESIS Guides to Digital Behavioral Data #8  |  12  

 

The terms of use should be consulted in which scraping ruls are often specified. Auto-

mated data collection might be fully allowed or disallowed, or, in some cases, specified 

for certain sections of the platform. For example, the capture of product information is 

allowed, whereas the capture of any vendor information is not allowed. Most websites 

contain links to their terms at the bottom of the webpage. 

Most websites also contain a “robots.txt” file, which specifies if scraping is allowed, for 

whom, and on which portion of the website. The robot file can be accessed by adding the 

“robots.txt” file with a slash to the base URL of the website (e.g., ebay.com/robots.txt). 

The scraper can access this file automatically and it can be used to determine which 

portions of the websites are allowed to be scraped. Additional explanations of the 

robot.txt file can be found at robotstxt.org. 

Websites might implement anti-scraping mechanisms such as CAPTCHAs (i.e., small 

tasks, that can be solved by humans to prove they are not a robot) or block the compu-

ter’s IP for a short duration if too many requests are sent. Such mechanisms are signs that 

the platform providers do not allow scraping, and they should, in most cases, not be 

circumvented. What is allowed or not allowed might also change depending on the 

country and individual circumstances of the data collection project and should be clari-

fied before performing any scrapes. Additional resources about legal considerations can 

be found in (Altobelli et al., 2021; Krotov & Johnson, 2023; Luscombe et al., 2022). 

 

References 

Altobelli, C., Forgó, N., Johnson, E., & Napieralski, A. (2021). To scrape or not to scrape? The 

lawfulness of social media crawling under the GDPR. University of Vienna, Faculty of Law, 

Department of Innovation and Digitalisation in Law. 

Edelmann, A., Wolff, T., Montagne, D., & Bail, C. A. (2020). Computational social science and 

sociology. Annual Review of Sociology, 46(1), 61–81. https//doi.org/10.1146/annurev-soc-

121919-054621 

Fröhling, L., Sen, I., Soldner, F., Steinbrinker, L., Zens, M., & Weller, K. (2023). Total Error Sheets 

for Datasets (TES-D). A critical guide to documenting online platform datasets. arXiv. 

https//doi.org/10.48550/arXiv.2306.14219 

Krotov, V., & Johnson, L. (2023). Big web data: Challenges related to data, technology, legality, 

and ethics. Business Horizons, 66(4), 481–491. https//doi.org/10.1016/j.bushor.2022.10.001 

Lukito, D. J., Brown, M. A., Dahlke, R., Suk, D. J., Yang, D. Y., Zhang, D. Y., Chen, B., Kim, S. J., & 

Soorholtz, K. (2023). The state of digital media data research. 

https//doi.org/10.26153/tsw/46177 

Luscombe, A., Dick, K., & Walby, K. (2022). Algorithmic thinking in the public interest: Navigating 

technical, legal, and ethical hurdles to web scraping in the social sciences. Quality & 

Quantity, 56(3), 1023–1044. https//doi.org/10.1007/s11135-021-01164-0 

http://www.ebay.com/robots.txt
http://www.robotstxt.org/
https://doi.org/10.1108/IJWIS-03-2021-0037
https://doi.org/10.1146/annurev-soc-121919-054621
https://doi.org/10.1146/annurev-soc-121919-054621
https://doi.org/10.1108/IJWIS-03-2021-0037
https://doi.org/10.48550/arXiv.2306.14219
https://doi.org/10.1108/IJWIS-03-2021-0037
https://doi.org/10.1016/j.bushor.2022.10.001
https://doi.org/10.1108/IJWIS-03-2021-0037
http://dx.doi.org/10.26153/tsw/46177
https://doi.org/10.1108/IJWIS-03-2021-0037
https://doi.org/10.1007/s11135-021-01164-0


 

 

 GESIS Guides to Digital Behavioral Data #8  |  13  

 

Sen, I., Flöck, F., Weller, K., Weiß, B., & Wagner, C. (2021). A total error framework for digital 

traces of human behavior on online platforms. Public Opinion Quarterly, 85(S1), 399-422. 

https//doi.org/10.1093/poq/nfab018 

Tromble, R. (2021). Where have all the data gone? A critical reflection on academic digital 

research in the post-API age. Social Media + Society, 7(1). 

https//doi.org/10.1177/2056305121988929 

All links in the text and the reference list were retrieved on Jan 19, 2024.  

https://doi.org/10.1108/IJWIS-03-2021-0037
https://doi.org/10.1093/poq/nfab018
https://doi.org/10.1108/IJWIS-03-2021-0037
https://doi.org/10.1177/2056305121988929


  

 

 

About the author  

Felix Soldner is a post-doctoral researcher at GESIS – Leibniz Institute for the Social Sciences in 

Cologne, Germany at the Computational Social Science department. He works with data science 

methods, such as machine learning (ML) and natural language processing (NLP) for his research 

on deception detection, fraud prevention, dark web markets, or data biases impacting ML per-

formances. For his projects he uses various data collection approaches, including custom scrap-

ers and APIs.  

Acknowledgements 

Leon Fröhling contributed on the data quality part, Figure 1 is based on a draft by Roberto Ulloa, 

and Gizem Bacaksizlar-Turbic provided helpful comments on the manuscript. 

 

 

 

 

 

 

 

 

 

 

 

Suggested citation 

Soldner, F. (2024): Overview of  Approaches for Collecting Data from Online Platforms  

(= GESIS Guides to Digital Behavioral Data, 8). Cologne: GESIS – Leibniz Institute for the Social Sciences 

Series editors 

Danica Radovanović, Maria Zens, Katrin Weller, Claudia Wagner 

Publisher  

 

License 

Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 Deed) 


