

GESIS Guides to Digital Behavioral Data #9 | 1

How to Collect Web Data via APIs

FELIX SOLDNER, N. GIZEM BACAKSIZLAR TURBIC, POURIA MIRELMI, JULIAN

KOHNE

GESIS – Leibniz Institute for the Social Sciences, Cologne, Germany

Publication date: August 27, 2024; Version 1.0

In this guide, we discuss and show how to collect web data by using APIs (Application Pro-
gramming Interfaces). We will use Wikipedia as an example and show how we can obtain

articles and extract information from this platform using an API. This guide is written for
users who want to collect or learn about APIs and have a basic understanding of Python
programming.

Keywords: automated data collection, API, Wikipedia, Python

1 What are APIs?

An Application Programming Interface (API) is “a way for two or more computer pro-

grams or components to communicate with each other. It is a type of software interface,

offering a service to other pieces of software” (Reddy, 2011). An API supports communi-

cation between computers by providing pre-written code that can be reused to stream-

line the interaction. For example, code packages in the programming language Python,

such as pandas are APIs because they assist programmers in speeding up their coding by

providing a set of pre-programmed functions that perform commonly needed opera-

tions. Similarly, typing a domain name in a browser uses an API and supports the retrieval

of information from a server (accessing a website) without the need to provide an IP ad-

dress. APIs that operate across the web are called web APIs and can be used through a

browser (Figure 1). However, manually making API calls with a browser by constructing a

GESIS Guides to Digital Behavioral Data

#9

https://pandas.pydata.org/

GESIS Guides to Digital Behavioral Data #9 | 2

URL, which functions as a command to retrieve information from a server, would be time-

consuming for large-scale data collection. Alternatively, we can use so-called “wrappers”

that act as an overlay to the API and construct the commands for us in a programming

language, thus, streamlining API calls.

 Figure 1. Relational setup of using an API

Web platforms provide APIs to users to make their interaction with the website more ac-

cessible by allowing automated uploads, downloads, and content changes. For example,

eBay allows users to access their shops’ inventory automatically, or YouTube allows us-

ers to upload and change content as well as access video reactions (e.g., views, com-

ments). In social science research contexts, we are interested in APIs, which also provide

platform data, often related to social interactions on social media websites. In many

cases, researchers who want to collect data via platform-specific APIs must create a de-

veloper account for the platform, apply for API access, and often also need to undergo a

vetting procedure in which the goals and procedures of the project must be described.

Most modern social media platforms offer APIs (Perriam et al., 2020), but not all platforms

have an API or provide public access. In addition, API accesses are often tiered into free

options that provide less information (e.g., type and scope) and more costly access levels

that provide more data. Very often, restrictions, typically in the form of so-called rate lim-

its, are introduced or altered over time. For example, Reddit recently limited the number

of API requests per minute (Huffman, 2023), YouTube has increasingly limited its daily API

quotas (Google for Developers, 2022), and Instagram and Facebook have also heavily

GESIS Guides to Digital Behavioral Data #9 | 3

restricted the accessibility of their APIs in the past (Abouelhassan, 2024). Hence, while

APIs often enable researchers to easily access public data from social media platforms,

they rarely provide access to all their data in unrestricted quantities – Wikipedia being a

notable exception in that regard. Accordingly, some information may be visible to re-

searchers in a browser but not available through the corresponding API.

Often, but not always, APIs and the associated wrappers are documented, describing

their functions, commands, and what type of information can be accessed and retrieved.

The documentation is an important source of information and should be consulted

whenever possible. Additionally, the Terms of Use/Service (ToS) of the API and the plat-

form should be carefully read as they lay out how the data can be used (and whether or

under what conditions they may be shared or published).

2 Using APIs vs. using web scraping

An alternative to using APIs is web scraping, sometimes also called screen scraping. In

essence, this procedure means that instead of directly querying a platforms database

through an API, researchers access the website containing the desired information

through a browser and save (parts of) the HTML file used by the browser. In comparison

to using an API, we can identify advantages but also disadvantages in web scraping.

The main advantage of web scraping is, that in principle, all data that is visible in the

browser can also be collected by researchers. This includes data that might not be avail-

able through the API, information on how things are displayed to users, or content that

is only visible after logging in with an account. Unless explicitly prevented by platforms

through technical means, researchers can also access as much data as their browser ses-

sion can handle at a time.

The main ‘disadvantage’ of web scraping is that many platforms’ ToS do not permit it.

Whether this restriction is legally binding for research purposes is being debated – and

can depend on a variety of factors, such as the volume of data scraped, what the data is

used for, or how it is being archived (Klawonn, 2020).

In essence, our advice would be to use an API whenever possible and only use web scrap-

ing if the required data cannot be accessed otherwise. Soldner (2024) offers a detailed

overview on the advantages and disadvantages of APIs and web scraping and the upcom-

ing Guides #10 and #11 will provide practical guidance on how to implement web scrap-

ers for static and dynamic webpages (i.e., whether a webpage loads content after user

interactions, such as scrolling).

GESIS Guides to Digital Behavioral Data #9 | 4

3 How to work with the Wikimedia (Wikipedia) API

As an example, and a use case for this guide, we are interested in obtaining information

from Wikipedia, the free online encyclopedia, created and edited by volunteers and one

of the products of the Wikimedia Foundation. Wikimedia offers a free API that can be used

without requiring a developer account. The API can be used through a web browser and

via the documentation. A sandbox environment can be accessed, where the URL creation

for API calls, which allow accessing Wikipedia content (articles, revisions, discussions,

etc.), can be tested. For content creation on Wikipedia, such as editing, an account is re-

quired.

Since working with browser URLs is tedious, we will make use of API wrappers, such as

the Python package Wikipedia. Before using this wrapper, we need to install the package

through conda or pip, depending on the programming environment. Information on how

to install packages with conda can be found here and with pip here. For the Wikipedia

package we use the command pip install wikipedia to install the package.

1.1 Retrieving basic information

We start by importing the Wikipedia wrapper.

import wikipedia as wp

Example: A search query with wikipedia can be made with search(). We want to

search for the city “Seattle”.

wp.search("seattle")

['Seattle',

 'Seattle Seahawks',

 'Seattle Sounders FC',

 'Seattle Kraken',

 'Seattle Mariners',

 'Chief Seattle',

 'The Seattle Times',

 'Seattle metropolitan area',

 'Sleepless in Seattle',

 'Seattle Post-Intelligencer']

We receive a list of found articles (also called pages) about the city and other related sub-

jects. We can reduce the results by specifying results in the function.

wp.search("seattle", results=3)

['Seattle', 'Seattle Sounders FC', 'Seattle Seahawks']

https://www.mediawiki.org/wiki/API:Main_page
https://www.mediawiki.org/wiki/Special:ApiSandbox
https://wikipedia.readthedocs.io/
https://docs.anaconda.com/working-with-conda/packages/install-packages/
https://packaging.python.org/en/latest/tutorials/installing-packages/

GESIS Guides to Digital Behavioral Data #9 | 5

Since we are interested in Seattle, the city, we use the first listed page, 'Seattle'. We

can retrieve a summary of the article through summary().

wp.summary("Seattle")

'Seattle (see-AT-əl) is a seaport city on the West Coast of the

United States. It is the seat of King County, Washington. With

a 2022 population of 749,256 it is the most populous city in

both the state of Washington and the Pacific Northwest region

of North America, and […]'

We can limit the number of retrieved sentences via the variable sentences.

wp.summary("Seattle", sentences=1)

summary() will raise a DisambiguationError if the page is a disambiguation page or

a PageError if the page doesn’t exist. However, by default, summary() will try to find

the page we want and provide a summary of a suggested page (similar spelling, etc.).

For example, we can try accessing a summary for “Mercury”.

wp.summary("Mercury")

The function gives us a DisambiguationError. We can work around it through try and

except and obtain the possible page options through options.

try:

 wp.summary("Mercury")

except wp.exceptions.DisambiguationError as DisError:

 article_options = DisError.options

print(article_options)

['Mercury (planet)', 'Mercury (element)', 'Mercury

(mythology)', 'Mercury (company)', […]]

We can now access the page we are interested in and retrieve its summary. Let us pick

the element (second in the list).

wp.summary(article_options[1])

"Mercury is a chemical element; it has symbol Hg and atomic

[…]"

Let us explore how we can retrieve information from the pages as we see them on the

web. As a reference, have a look at the Wikipedia page about Seattle: https://en.wikipe-

dia.org/wiki/Seattle.

https://en.wikipedia.org/wiki/Seattle
https://en.wikipedia.org/wiki/Seattle

GESIS Guides to Digital Behavioral Data #9 | 6

First, we can use the function WikipediaPage() to load and access data from full Wik-

ipedia pages. We start by giving the function the page name we are interested in. We opt

for “Seattle”.

wp_page = wp.WikipediaPage("Seattle")

We saved the page in the variable wp_page, to which we can add attribute commands to

retrieve information, such as the URL, categories, images, sections, etc. We can retrieve

the entire HTML content by adding html().

wp_page.html()

'<div class="mw-content-ltr mw-parser-output" lang="en"

dir="ltr"><div class="shortdescription […]'

However, we cannot read such an output well. We can import and use the HTML package

to view the content on the webpage.

from IPython.core.display import HTML

HTML(wp_page.html())

Let us have a look at page attributes.

wp_page.title, wp_page.url

('Seattle', 'https://en.wikipedia.org/wiki/Seattle')

Similarly, we can use content.

wp_page.content

'Seattle (see-AT-əl) is a seaport city on the West Coast of the

United States. It is the […]'

Or we can look at references, which will retrieve the URLs of the external links of the

page.

wp_page.references

['http://www.seattleopera.org/discover/wagner/index.aspx',

 'http://www.playbillarts.com/news/article/5090.html',

 […]]

We can access the images on the page using images. Let us retrieve the first three im-

ages.

GESIS Guides to Digital Behavioral Data #9 | 7

wp_page.images[:3]

['https://upload.wikimedia.org/wikipedia/commons/a/aa/Abies_las

iocarpa_0775.JPG',

'https://upload.wikimedia.org/wikipedia/commons/2/2f/Amazon_Sph

eres_from_6th_Avenue%2C_April_2020.jpg',

'https://upload.wikimedia.org/wikipedia/commons/9/98/Ambox_curr

ent_red.svg']

A handy function within Python is dir(), which shows the directory (list) of all attributes

of an object (including functions). If we use it on our variable wp_page, we can see that it

lists all the attributes also specified in the documentation (and a few more internal func-

tions). Using dir() can help us to get a quick overview of what we can do with the cur-

rent object.

dir(wp_page)

[[…], 'html', 'images', 'links', […]]

Next, we can save the information in a more structured format to make it easier to ma-

nipulate the data further. Let us save some of the information in a pandas DataFrame.

import pandas as pd

data = pd.DataFrame(

data = [[wp_page.title, wp_page.url, wp_page.content,

wp_page.images, wp_page.references, wp_page.links,

wp_page.categories]],

columns = ['Title', 'URL', 'Content', 'Images', 'References',

'Links', 'Categories'])

data.head()

[Title URL Content […]

Seattle https://en.wikipedia.org/wiki/Seattle Seattle […]

A row represents a Wikipedia page, and the columns are the associated attributes of that

page. We can also change the language of the Wikipedia pages through the set_lang()

function. We need to keep in mind to search for page titles in the language we have set.

wp.set_lang("es") # spanish

wp.summary("Seattle", sentences=2)

'Seattle (/siːˈæ|əɫ/) es la ciudad más grande del estado de […]'

Let us set it back to English.

wp.set_lang("en")

GESIS Guides to Digital Behavioral Data #9 | 8

1.2 Retrieving tables

In some cases, we might be interested in content found in tables on Wikipedia pages. For

example, a list of Nobel laureates or a list of political parties in Germany. Retrieving table

content can be tricky since Wikipedia pages can contain many markups (i.e., indicators

of links, formats, etc.) that can obscure the content we are interested in.

Using the Wikipedia page “List of Nobel laureates” as an example, we want to extract the

data in the table on that page. First, we can load the page with the package wikipedia

using the page() function.

page_nobel = wp.page("List of Nobel laureates")

Next, we want to save the page in an HTML format with the html attribute. We also need

to specify how the page should be encoded (i.e., how the function should understand the

wiki code). In this case, we select UTF-8, a standard format that allows us to obtain the

content in the table in a human-readable form (for more information on character en-

coding, see here).

html_nobel = page_nobel.html().encode("UTF-8")

We can now save the HTML page in a pandas DataFrame. Here, we also need to specify

the encoding format. Since the read_html() function saves all the page information as

tables, a list of tables is created, and we need to specify which table we are interested in.

In this case, the first table, indicated with [0].

nobel_table = pd.read_html(html_nobel, encoding="utf-8",

index_col=0)[0]

nobel_table.head()

The output is shown in Table 1.

Year Physics Chemistry Physiology or Medicine

1901 Wilhelm Röntgen Jacobus Henricus van 't Hoff Emil von Behring

1902 Hendrik Lorentz;

Pieter Zeeman

Emil Fischer Ronald Ross

… … … …

 Table 1. Nobel laureates

1.3 Retrieving Wikipedia page revisions

Wikipedia pages are constantly edited and discussed among Wikipedians. Since page

changes are tracked, we can access past versions and revisions. We will look at how we

https://en.wikipedia.org/wiki/List_of_Nobel_laureates
https://en.wikipedia.org/wiki/List_of_political_parties_in_Germany
https://en.wikipedia.org/wiki/List_of_Nobel_laureates
https://en.wikipedia.org/wiki/Character_encoding
https://en.wikipedia.org/wiki/Character_encoding

GESIS Guides to Digital Behavioral Data #9 | 9

can extract revisions of Wikipedia pages using the packages Pywikibot and

MWParserFromHell.

▪ Pywikibot is a wrapper that provides us with the markup code of Wikipedia pages

(i.e., indicators for links, tables, paragraphs, etc.).

▪ MWParserFromHell is a parser that can read the markup and help us obtain the in-

formation we are interested in.

Before we can import these packages into our environment, we need to install them.

Both packages are unavailable through Anaconda but can be installed with pip.1

import pywikibot

import mwparserfromhell

Using the Site() and Page() function from pywikibot, we can load the Wikipedia

website and the page we are interested in.

site = pywikibot.Site('en', 'wikipedia')

page = pywikibot.Page(site, "Seattle")

We can then obtain all the page revisions using the revisions() attribute. Depending

on the number of revisions, it can take a few seconds. Since the Wikipedia entry for Seat-

tle has many revisions, we will limit the retrieved revisions to 200 with total (it might

take a few seconds).

revisions = page.revisions(content=True, total=200)

We can list the revisions and group them in the year they have been written. Each revision

is a dictionary, and we can retrieve the years using the timestamp key in those diction-

aries.

revisions_list = []

years = []

for revision in revisions:

 revisions_list.append(revision)

 years.append(int(str(revision["timestamp"])[:4]))

print(years)

[2024, 2024, 2024, 2024, 2024, 2024, 2024, […], 2023]

1 If possible, it should be avoided to use conda and pip simultaneously to handle packages. If Anaconda is used, but a

package is not available, the best option is to create a virtual environment, in which pip is used.

https://doc.wikimedia.org/pywikibot/stable/
https://mwparserfromhell.readthedocs.io/en/latest/index.html

GESIS Guides to Digital Behavioral Data #9 | 10

We can see that the last 200 revisions reach back to 2023.

Using the keys() function, we can look at the type of information the revision dictionary

contains without looking at the content.

print(list(revisions_list[0].keys()))

['revid', 'parentid', 'user', 'userid', 'timestamp', 'size',

'sha1', 'roles', 'slots', 'comment', 'parsedcomment', 'tags',

'anon', 'minor', 'userhidden', 'commenthidden', 'text',

'contentmodel']

In many cases, we are interested in the actual text of the revision and the user who made

that revision. Let us have a look at what each entry looks like.

revisions_list[0]["user"]

'William Avery'

revisions_list[0]["text"]

'{{short description|Largest city in Washington,

U.S.}}\n{{about|the city}}\n{{pp-move}}\n{{pp-semi-

indef|small=yes}}\n{{Use mdy dates|date=February 2024}}\n […]'

The username is readable, but the text contains many markups that make it difficult to

read or process further for text analyses. We can parse the text with mwparserfromhell

to make the text more human-readable.

parsed_text = mwparserfromhell.parse(revisions_list[0]["text"])

print(parsed_text.strip_code())

Seattle () is a seaport city on the West Coast of the United

States. It is the seat of King County, Washington. With a 2022

population of 749,256 it is the most populous city in both the

state of […]

Looks better! We can now iterate over the text and save the year, user, and cleaned text.

We can define a function that cleans our text to simplify our code.

def clean_text(text):

 parsed_text = mwparserfromhell.parse(text)

 return parsed_text.strip_code()

Obtain revisions - might take a few seconds.

revisions = page.revisions(content=True, total=200)

GESIS Guides to Digital Behavioral Data #9 | 11

Initiate lists

years = []

users = []

texts = []

Iteration

for revision in revisions:

 years.append(int(str(revision["timestamp"])[:4]))

 users.append(revision["user"])

 texts.append(clean_text(revision["text"]))

Finally, we can save the data into a DataFrame, making future analyses easier.

The output revision_data = pd.DataFrame({'year': years, 'user':

users, 'text': texts})

revision_data.head()

The output is shown as Table 2.

year user text

2024 William Avery Seattle () is a seaport city on the West Coas…

2024 Cfls Seattle () is a seaport city on the West Coas…

2024 SounderBruce Seattle () is a seaport city on the West Coas…

2024 Bgarrott2023 Seattle () is the most populous city in, and …

2024 Citation bot Seattle () is a seaport city on the West Coas…

 Table 2. Revisions of “Seattle” page

Further text processing is out of the scope of this guide, and we will end here with the

coding instructions. However, additional material about data wrangling, cleaning, and

visualization can be found in this list of resources, as well as in this GitHub repository with

useful Jupyter Notebooks.

4 Conclusion

This guide provides an overview on how to work with APIs through wrappers, with Wik-

ipedia as an example. We demonstrated how to query the Wikipedia API to obtain data

from articles. By utilizing various Python packages, we showed how to save the obtained

data in text and table form, making it suitable for further (text) analyses. Thus, the guide

provides the basics for working with APIs as the principle of querying, retrieving, and

managing data remains largely similar across APIs. Once those principles are under-

stood, the remaining difficulties lie in learning and using the individual commands spe-

cific to the API, that are, ideally, documented. In many cases, more than one wrapper

https://medium.com/information-expositions-s2022/resources-for-data-cleaning-visualization-communication-and-journalism-255a4e5a2f2d
https://github.com/stefmolin/Hands-On-Data-Analysis-with-Pandas-2nd-edition?tab=readme-ov-file

GESIS Guides to Digital Behavioral Data #9 | 12

exists for an API, often catering to specific needs (e.g., analyzing Wikipedia revisions), and

a quick web search including the data type or research goal will help find them. Since

APIs change, wrappers must adapt and might become outdated if not maintained.

Checking the latest updates when finding a wrapper can indicate if it still works when

implemented. Similarly, before using an API or wrapper, their latest documentation

should be read, which will help determine if they are suited for the intended purpose.

References

Abouelhassen, M. A. (2024, January 23). Introducing Facebook Graph API v19.0 and Marketing

API v19.0. Facebook Developers Blog.

https://developers.facebook.com/blog/post/2024/01/23/introducing-facebook-graph-

and-marketing-api-v19/

Google for Developers. (2022, April 11). YouTube data API - quota and compliance audits.

https://developers.google.com/youtube/v3/guides/quota_and_compliance_audits

Huffman, S. [spez]. (2023, June 19). Addressing the community about changes to our API [Online

forum post]. Reddit.

https://www.reddit.com/r/reddit/comments/145bram/addressing_the_community_abo

ut_changes_to_our_api/

Klawonn, T. (2020, January 7). Grenzen des „Web Scraping”. Forschung & Lehre.

https://www.forschung-und-lehre.de/recht/grenzen-des-web-scrapings-2421/

Perriam, J., Birbak, A., & Freeman, A. (2020). Digital methods in a post-API environment.

International Journal of Social Research Methodology, 23(3), 277-290.

https://doi.org/10.1080/13645579.2019.1682840

Reddy, M. (2011). API Design for C++. Elsevier. https://doi.org/10.1016/C2010-0-65832-9

Soldner, F. (2024). Overview of approaches for collecting data from online platforms (GESIS

Guides to Digital Behavioral Data, 8). Cologne: GESIS – Leibniz Institute for the Social

Sciences.

All references and links were retrieved on July 15, 2024.

Acknowledgements

The authors are grateful to Roberto Ulloa for contributing to figure 1.

https://developers.facebook.com/blog/post/2024/01/23/introducing-facebook-graph-and-marketing-api-v19/
https://developers.facebook.com/blog/post/2024/01/23/introducing-facebook-graph-and-marketing-api-v19/
https://developers.google.com/youtube/v3/guides/quota_and_compliance_audits
https://www.reddit.com/r/reddit/comments/145bram/addressing_the_community_about_changes_to_our_api/
https://www.reddit.com/r/reddit/comments/145bram/addressing_the_community_about_changes_to_our_api/
https://www.forschung-und-lehre.de/recht/grenzen-des-web-scrapings-2421/
https://doi.org/10.1080/13645579.2019.1682840
https://doi.org/10.1016/C2010-0-65832-9

About the author(s)

Felix Soldner is a post-doctoral researcher at GESIS – Leibniz Institute for the Social Sciences in

Cologne, Germany at the Computational Social Science department. He works with data science

methods, such as Machine Learning (ML) and Natural Language Processing (NLP), to research

subjects, such as deception detection, fraud prevention, dark web markets, and data biases im-

pacting ML performances. For his projects he uses various data collection approaches, including

custom scrapers and APIs.

N. Gizem Bacaksizlar Turbic is a post-doctoral researcher at GESIS – Leibniz Institute for the So-

cial Sciences in Cologne, Germany at the Computational Social Science department. Her research

areas include social and political networks, and social media analysis.

Pouria Mirelmi is a master’s student in Computational Social Science at RWTH Aachen University,

and a student assistant at GESIS – Leibniz Institute for the Social Sciences. His current research

focus is Social Network Analysis and Large Language Models.

Julian Kohne is a doctoral researcher in the team Designed Digital Data in the Department of

Computational Social Science at GESIS – Leibniz Institute for the Social Sciences in Cologne, Ger-

many, and the Department of Molecular Psychology at Ulm University, Germany. His work at

GESIS contributes to developing an app for collecting survey data and digital behavioral data us-

ing smartphones. In his dissertation at Ulm University, he is using donated WhatsApp chat log

data to investigate communication in close interpersonal relationships. More information:

https://www.juliankohne.com/

Suggested citation

Soldner, F., Bacaksizlar Turbic, N. G., Mirelmi, P., & Kohne, J. (2024). How to collect web data via APIs

(GESIS Guides to Digital Behavioral Data, 9). Cologne: GESIS – Leibniz Institute for the Social Sciences.

Series editors

Danica Radovanović, Maria Zens, Johannes Breuer, Katrin Weller, Claudia Wagner

Publisher

License

Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 Deed)

https://www.juliankohne.com/

	How to Collect Web Data via APIs
	1 What are APIs?
	2 Using APIs vs. using web scraping
	3 How to work with the Wikimedia (Wikipedia) API
	1.1 Retrieving basic information
	1.2 Retrieving tables
	1.3 Retrieving Wikipedia page revisions

	4 Conclusion
	References

