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Abstract

Declining response rates increase the fear of nonresponse bias. This guideline discusses the relationship
between nonresponse and nonrespones bias and gives an overview of indicators that are frequently used
to determine the risk of nonresponse bias. The indicators are illustrated in a simulated data example.
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1. Introduction

Declining response rates all over the world increase the fear of nonresponse bias, i.e., that the respon-
dents to a survey do not well represent the group of individuals who has been invited to participate in
that survey. In the presence of nonresponse bias, raw survey estimates can not be used to draw valid
conclusions on the population of interest.

High nonresponse does not necessarily imply high nonresponse bias. This guideline discusses the rela-
tionship between nonresponse and nonresponse bias and gives an overview of methods to determine
nonresponse bias for a specific survey or survey variable of interest. Talking about survey nonresponse,
we can in general distinguish between item nonresponse and unit nonresponse. Unit nonresponse
means that an individual who is sampled and invited to participate in a survey does not participate
in that survey at all. Item nonresponse occurs if an interviewed person does not give an answer to a
specific question. This guideline captures unit nonresponse, for a discussion of the handling of item
nonresponse we refer to the GESIS survey guideline on imputation (Bruch, 2023). Adjustment methods
might be applied to reduce nonresponse bias but they only work under certain conditions that are
discussed in this guideline. This guideline does, however, not address the treatment nor the prevention
of nonresponse bias. For the former, we recommend the survey guidelines on weighting (Gabler, Kolb,
Sand, & Zins, 2015; Sand & Kunz, 2020), for the latter the survey guideline on nonresponse bias (Koch &
Blohm, 2015).

Nonresponse is by far not the only source of potential survey error (Groves & Lyberg, 2010). For simplicity,
this guideline ignores all other sources of error, for example, we assume simple random sampling and
measurements without error or item nonresponse. The next section discusses the relationship between
survey nonresponse and nonresponse bias. Several univariate and multivariate indicators for the risk of
nonresponse bias are discussed in Section 3. In Section 4, we illustrate some of the nonresponse bias
indicators using a synthetic data example. A R-file to replicate the example is made available online. We
conclude with a discussion in Section 5.

2. Relationship of survey nonresponse and nonresponse bias

In the following, we denote the survey variables byX, Y , Z, and the matrix and vector of their observed
values by x , y , z . Unit nonresponse can occur for several reasons and is not necessarily a problem for the
quality of the survey. Let Y be the survey variable of interest that one plans to analyse,X and Z be two
distinct sets of personal characteristics of the invited individual and  ∈ [0; 1] be response propensities.

2.1 Nonresponse mechanisms

Groves (2006) distinguishes between three nonresponse mechanisms that can be explained by di�erent
models:

Separate Cause Model: The response propensity  depends on personal characteristics Z that are not
associated with the variable of interest Y . Y is associated with personal characteristicsX that do not af-
fect the response propensity. In this situation, Y andare not associated. This means that nonresponse
does not lead to nonresponse bias in the analysis of Y .

As Groves (2006) notes, completely unrelated causes are hard to imagine in practice. The separate cause
model is, however, very useful when thinking of the relationship of nonresponse and nonresponse bias
and to contrast the other models against it.

Common Cause Model: The same individual characteristics Z a�ect the response propensity  and the
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variable of interest Y . The common cause generates an association between  and Y thus potentially
biasing the analysis of Y .

If Z is known for respondents and nonresponents, it can be used to perform nonresponse adjustments
in the analysis of the survey variable Y and to reduce nonresponse bias. Like the separate cause model,
the common cause model is a simplified model. In practical applications, there will most likely be un-
boservedZ-variables that can not be included in the nonresponse adjustment.

Survey Variable Cause Model: The variable of interestY directly a�ects the response propensity. Since
 and Y are associated, analysis of Y will su�er from nonresponse bias, and this can not be completely
removed by any weighting or adjustment method.

It is important to note that di�erent nonresponse models might hold for di�erent variables Y of the same
survey. The nonresponse mechanism and thus nonresponse bias is always variable-specific.

2.2 Di�erent perspectives on nonresponse bias

Nonresponse bias can be viewed from several perspectives that highlight di�erent facets.

We di�erentiate between three groups: The overall target population (with size N∗), the sampled indi-
viduals (with sizeN), and the survey respondents (with size n), whereN∗ > N ≥ n. In this guideline, we
assume that the survey sample is randomly drawn from the target population. For ease of exposition we
further assume a simple random sample, i.e., sampling with equal inclusion probabilities.

With yi being the value for survey variable Y for individual i , the population mean of Y is given by ȳP =
1=N∗PN∗

i=1 yi , the mean of the sampled individuals by ȳS = 1=N
PN

i=1 yi , and the mean of the survey re-
spondents by ȳR = 1=n

Pn
i=1 yi . For more complex survey designs with unequal inclusion probabilities,

survey estimates must to be design-weighted.

Nonresponse bias (NRB) in the estimated mean of a survey variable Y is given by the di�erence between
the mean value of the survey respondents ȳR and the mean of the target population ȳP . Assuming ran-
dom sampling, ȳP = ȳS holds, such that

NRBY = ȳR − ȳS: (1)

As can easily be seen, we do not have to expect nonresponse bias in ȳR if respondents do not di�er from
the target population in Y on average. Nonresponse bias gets larger as the di�erence increases.

Looking at this relationship more closely, usually the deterministic and the stochastic view on nonre-
sponse bias are distinguished. Even though they refer to the exact same concept, they highlight di�erent
aspects making it worth to look at both of them.

The deterministic view on nonresponse bias is given by (see for example Groves, 2006):

NRBY = (1− RR)(ȳR − ȳNR); (2)

whereRR = n
N is the response rate and the mean of the nonrespondents is given by ȳNR. Nonresponse

bias is a�ected by the response rate and the di�erence between means for respondents and nonrespon-
dents. This means two things: For a given di�erence between respondents and nonrespondents, an in-
creasing response rate will lower nonresponse bias. For a given response rate, lower di�erences between
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respondents and nonrespondents lead to lower nonresponse bias. If respondents and nonrespondents
do not di�er in Y at all, no nonresponse bias is to be expected in Y .

The stochastic approach takes the perspective that participants are not determined to be either respon-
dents or nonrespondents, but characterized by a latent, stochastic propensity to respond. Taking this
approach, nonresponse bias is computed over all elements of the target population, weighted by their
unobserved response propensities i . This gives rise to the following definition (Bethlehem, 1988):

NRBY ≈
1

̄
Cov(y; )

≈ 1

̄
Cor(y; )ffyff (3)

where  is the vector (of length N∗) of response propensities with population mean ̄. The population
covariance of y and  is given by Cov(y; ) = 1=N∗PN∗

i=1(yi − ȳP )(i − ̄). The population standard

deviations of y andareffy =
q

1=N∗PN
i=1(yi − ȳ)2 andff =

q
1=N∗PN

i=1(i − ̄)2, andCor(y; ) =
Cov(y;)
ffyff

is the population correlation of y and .

As the stochastic view highlights, nonresponse bias decreases with increasing ̄ (which corresponds to
the response rate), decreasing correlation of Y and , and decreasing standard deviations of both  and
y . IfCor(y; ) = 0, i.e., if the nonresponse mechanism is not related to Y at all, no nonresponse bias is to
be expected. The same is true if ff = 0 (all individuals have the same propensity to respond) or ffy = 0
(all individuals have the same value of Y ).

2.3 Why is the response rate alone not a reliable indicator of nonresponse bias?

Surveys o�en report the response rate as an indicator for the quality of the survey. As can be seen from
the formulas above, the response rate is part of the deterministic and stochastic perspective on nonre-
sponse bias. Keeping the other factors constant, nonresponse bias is lower the higher the response rate
is. There is, however, no clear relationship between the response rate of a survey and the other factors
that constitute nonresponse bias. The response rate alone does not allow for an evaluation of nonre-
sponse bias and is thus not a good nonresponse bias indicator (for empirical findings see for example
Groves, 2006; Groves & Peytcheva, 2008).

3. Nonresponse bias analysis

Many methods to examine nonresponse bias have been developed based on Equations (1) to (3). There
are too many methods available to be covered in this survey guideline. Thus, the following sections focus
on the most frequently used ones.

When conducting nonresponse bias analysis, we need to estimate some of the components of the indi-
cators that have been introduced above. In the survey methodological literature, the term representa-
tiveness is widely used to describe the quality of a survey. Representativeness is, however, not clearly
defined and may address many di�erent aspects. Focusing on nonresponse bias and assuming random
sampling in this guideline, we will call a survey representative if it is not subject to nonresponse bias.
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3.1 Components of nonresponse bias analysis

Many of the parameters discussed in Equations (1) to (3) are not known but can be estimated based on the
survey information. The mean of the respondents can be estimated by the survey mean ˆ̄y = 1

n

Pn
i=1 yi

where yi (i = 1; : : : ; n) is the survey value for the i th respondent. The response propensity of the invited
individuals  is not known. In many cases, auxiliary variables X are available for respondents and non-
respondents that can be used to estimate the response propensity. They might be available from the
sample frame (e.g., age and gender from o�icial registers), administrative data, paradata from the sam-
pling or recruitment process or, in the panel context, be survey answers from previous survey waves. To
estimate the response propensity , the participation indicator R (R=1 if the individual responds to the
survey and zero otherwise) is regressed on multiple (v )X-variables, commonly using logistic regression
such as

̂i = P (Ri = 1) =
exp( ˆ̨

0 + ˆ̨
1xi1 + : : :+ ˆ̨

pxiv )

1 + exp( ˆ̨
0 + ˆ̨

1xi1 + : : :+ ˆ̨
pxiv )

(4)

where ̂i is the estimated response propensity for the i th individual, i = 1 : : : N (the full sample), ˆ̨
0

is the intercept and ˆ̨
1 : : : ˆ̨

v are the slopes for the observed auxiliary variables X1 : : : Xv ; xi1 : : : xiv are
the values of the X-variables of individual i . For large data sets, machine learning methods might be
preferred over standard logistic regression, see for example Felderer, Kueck, & Spindler (2023).

The population parameter ȳp is usually not known – that is why we conduct the survey in the first place
– and can not be estimated from the survey. The same is true for the parameters ȳS and ȳNR.

There are several indicators available to evaluate the risk of nonresponse bias that can be roughly put
into two categories: Indicators that refer to the risk of nonresponse bias of a whole survey and indicators
that focus on specific survey variables. For the latter, one can distinguish indicators that basically refer
to auxiliary variables and indicators that refer to the variable of interest.

Nonresponse bias as introduced above can usually only be estimated forX-variables that are known for
respondents and nonrespondents or for which population benchmarks are available. The Y -variable is
usually unobserved for the nonrespondents and lacks a population benchmark. We thus can not study
nonresponse bias in the Y -variable directly but rather the risk of nonresponse bias that we derive from
knowledge about nonresponse bias in theX-variables and the relation betweenX and Y .

Many indicators that we introduce in the following section are generated to apporach nonresponse bias in
di�erent ways refering to single aspects of equation (3). They consequently do not estimate nonresponse
bias in the strict sense but rather the risk of nonresponse bias (inX or in Y ).

3.2 Multivariate nonresponse bias indicators

Several measures for the risk of nonresponse bias have been developed that are based on auxiliary infor-
mation on respondents and nonrespondents. At their essence, these measures attempt to estimate the
extent to which individuals in the survey resemble those in the gross sample or population with respect to
the auxiliaryX- variables. These results are then used to infer possible bias in the Y - variables of interest.
The usefulness of the indicators to evaluate the risk of nonresponse bias in a specific variable of interest
heavily depends on the association of this variable and the auxiliary variables. If both variables are not
related at all, nonresponse bias inX is not a good indicator for nonresponse bias in Y . The stronger the
variables are related, the more we expect Y to show nonresponse bias if X does. The following indica-
tors are multivariate in a way that they account for several auxiliary variables and their relationships in
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preducing survey nonresponse. Two of them allow to analyse the e�ect of nonresponse on specific sur-
vey variables of interest. The interpretation of the multivariate nonresponse bias indicators is limited to
the specific auxiliary variables that they are built on. An excellent comparison of indicators for the risk of
nonresponse bias can be found in Wagner (2012).

R-indicator

The R-indicatorR() (Schouten, Cobben, & Bethlehem, 2009) takes the variation of the response propen-
sity  as a measure for the risk of nonresponse bias. With ff being the population standard deviation of
, the R-indicator is given by:

R() = 1− 2ff (5)

The R-indicator can take values between 0 and 1. If all sampled individuals have the same propensity to
respond, the standard deviation of the response propensities ff is 0 and the R-indicator takes the value
of 1. This means that the survey is perfectly “representative”. The R- indicator is zero if ff = 0:5 which is
the highest value ff can take. This means that the response propensities are very di�erent and the risk
of nonresponse bias is high. Only if the auxiliary variables are correlated with both  and the variable
of interest, the R-indicator can give a good impression on the risk of nonresponse bias in the variable of
interest.

In practical applications, the R-indicator can be estimated by R̂(̂) = 1− 2ff̂̂ where ̂i are the estimated
response propensities based on auxiliary information as described in Equation (4). Its standard deviation
is estimated by ff̂̂ = 1

N

Pn
i=1(̂i− ˆ̄)2 where ̂i is the estimated response propensity for the i th individual

and ˆ̄ is the mean of the estimated propensities.

The R-indicator gives an impression whether the di�erent population subgroups, characterized by a com-
bination ofX-variables, are well represented in the survey. The R-indicator does not allow to determine
how the individual auxiliary variables that are used to estimate the R-indicator contribute to represen-
tativeness. Partial R-indicators have been developed to overcome this limitation (Schouten, Shlomo, &
Skinner, 2010).

As for all multivariate nonresponse bias indicators, the usefulness of the R-indicator depends on the aux-
iliary variables that are used to estimate ̂. The R-indicator can only be interpreted with regard to the aux-
iliary information that it builds on (see for example Roberts, Vandenplas, & Herzing, 2020). R-Indicators
are frequently used to compare di�erent (sub)-samples. Comparisons of R-Indicators are only meaning-
ful if the R-indicators are build in the exact same way including the same auxiliary variables. Higher values
of the R-indicators indicate better representativeness. However, there is no agreement in the literature
on the threshold value above which one can speak of good representativeness. As a guide, an R-indicator
of 0:7 is considered to be rather low (Lugtig, Roth, Schouten, et al., 2022).

Goodness of fit of the propensity model

The propensity model for ̂i (see Equation (4)) can be further analysed. The coe�icients of theX-variables
allow for an interpretation of which variables influence the response propensity. If the response propen-
sity does not depend onX-variables, we expect all coe�icients to be insignificant and close to zero. Mea-
sures for the goodness of fit of the propensity model, like the (pseudo) R2 or the area under the curve
(AUC) are taken as indicators for the risk of nonresponse bias (see for example Groves et al., 2008). Higher
values in these measures means that more variation in ̂ can be explained by theX-variables. This means
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that respondents and nonrespondents di�er for their values ofX. A higher goodness of fit of the propen-
sity model thus is taken as an indicator for a higher risk of nonresponse bias in estimates of the variable
of interest.

Like the R-indicator, the goodness of fit of the propensity model, however, is only a good indicator for the
risk of nonresponse bias in the variable of interest if this variable is associated with X. Finding that the
observedX-variables that are included in the propensity model do not explain variation in ̂ does, on the
other side, not necessarily mean that the risk of nonresponse bias is low as there may exist unobserved
variables that systematically a�ect nonresponse.

Variation of nonresponse weights

Propensity models like in Equation (4) can be used to create adjustment/nonresponse weights by taking
the inverse of the estimated response propensity (1=̂i ) (Little, 1986). The rough idea behind adjustment
methods is to give the groups of respondents who have a lower propensity to respond to the survey (given
X-variables) a higher weight in the analysis of the survey data.

The variance of nonresponse weights can be taken as an indicator for the risk of nonresponse bias (Groves
et al., 2008): If all individuals have the same propensity to respond, the variance of the nonresponse
weights is zero. The higher the variance is, the larger are the di�erences in the response propensities and
the higher the risk of nonresponse bias. This sort of analysis can be conducted for other kinds of non-
response weighting methods as well and is not limited to propensity weights. Of course, the limitations
concerning the relations betweenX-variables and Y that we discussed above also hold for this and other
multivariate nonresponse bias indicators.

Correlation between nonresponse weights and Y

The correlation between the nonresponse weights and observed Y is an attempt to estimate the associ-
ation of the auxiliary variables and the response propensity and Y (Groves et al., 2008). The association
can only be estimated for respondents and relies on the assumption that the association is the same for
respondents and the full sample. A higher correlation between nonresponse weights and Y indicates a
higher risk of nonresponse bias. In this case, we will also observe di�erences between weighted and un-
weighted means and proportions of Y (see Gabler et al. (2015) and Sand & Kunz (2020) on the theoretical
background and application on di�erent kinds of nonresponse weights). The correlation between non-
response weights and Y is an indicator for nonresponse bias before weighting adjustment. It does not
allow any conclusions about nonresponse bias of the adjusted statistics or the usefulness of the weights.
The correlation between nonresponse weights and Y is only a meaningful indicator for nonresponse bias
under the MAR-assumption.

Fraction of missing information

The fraction of missing information (FMI) was developed in the multiple imputation context (see Rubin,
1987) dealing with item nonresponse and has been transferred to unit nonresponse bias analysis (Wag-
ner, 2010). In the context of unit nonresponse, the missing survey information of nonrespondents is im-
puted using auxiliary data that is available for respondents and nonrespondents. The idea is to take
the level of uncertainty when imputing the missing values for the variable of interest Y based on aux-
iliary (complete) X as an indicator for nonresponse bias. For the FMI, the missing observations in the
Y -variables are imputed multiple (M) times. The mean or proportion of Y is then estimated based on
the fully imputed data set (including observed values for respondents and imputed values for nonre-
spondents) for each imputation roundm.
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With M imputations for each missing value, ȳ is estimated by ˆ̄yM =
PM

m=1
ˆ̄ym=M where ˆ̄ym is the es-

timated mean in the mth imputed data set. The FMI gives a measure of uncertainty about the imputed
values by computing the relation between the between-imputation variance and the total variance of
ˆ̄yM . Let V arm(ˆ̄ym) be the variance of ˆ̄ym in the mth imputed data set. The within-imputation variance
is given by V arW (ˆ̄yM) =

PM
m=1 V arm(ˆ̄ym)=M. The within-imputation variance describes the variance

that is due to sampling. The between-imputation variance is given by V arB(ˆ̄yM) =
PM
m=1(ˆ̄ym− ˆ̄yM)2

(M−1) and
is the part of variation that is due to imputation uncertainty. The total variance is given by V ar(ˆ̄yM) =
V arW (ˆ̄yM) + (M + 1)M−1V arB(ˆ̄yM).

The FMI is given as the ratio of the between-imputation and total variance and is estimated as

[FMI =
(1 + 1

M )V arB(ˆ̄yM)

V ar(ˆ̄yM)
(6)

The FMI ranges from 0 to 1 and can be interpreted as the proportion of variation in the estimation of ȳ
that is due to the missing data. The higher the uncertainty about the values of Y given X, the more dif-
ferent are the imputed values between the imputation rounds and the higher is the between-imputation
variance. Or, in other words, if the data includes good predictors for Y , the between-imputation variance
decreases (Rubin (1987)). A larger ˆFMI is thus interpreted to indicate a higher risk of nonresponse bias
in the estimation of ˆ̄y caused by other variables than included in the imputation process.

If the imputation model perfectly explains Y , there are no di�erences expected between the imputation
rounds and the between-imputation variance is close to zero. As Wagner (2010) shows, for correctly spec-
ified imputation models, the FMI is close to the nonresponse rate if Y and X are only weakly correlated
and moves toward zero as the correlation increases. Highly correlated X variables can thus recover the
missing information in Y .

As Andridge & Little (2011) note the FMI has the disadvantage to focus more on precision than on bias
and is limited to MAR situations. The FMI also depends on the imputation methods and the specification
of the imputation model (Wagner, 2010).

3.3 Univariate nonresponse bias indicators

The multivariate nonresponse bias indicators introduced in the previous section are measures including
several X-variables and their relationships. With the exception of the interpretation of the coe�icients
of the nonresponse propensity model, they do not allow for an interpretation which specificX variables
contribute to bias and in which direction. Although it is possible to run nonresponse models with just a
single variable and use this model to estimate the nonresponse bias indicators discussed in the previous
section, other methods are better suited to look at the e�ects of individual variables. Such univariate
nonresponse bias indicators give more detailed information on nonresponse bias of certain variables and
can be used to evaluate which of the auxiliary variables a�ect the risk of nonresponse bias in the variables
of interest. This is done by comparing respondents to o�icial population benchmarks or respondents to
nonrespondents for these auxiliary variables. Univariate nonresponse bias indicators do not account
for the interplay of di�erent auxiliary variables. Like the nonresponse bias indicators discussed in the
previous section, univariate nonresponse bias indicators are only useful under the assumption that the
auxiliary variables are related to the variable of interest.
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Benchmark comparisons

One way to evaluate nonresponse bias is to compare survey findings to benchmarks from o�icial
statistics for the general population (see for example Felderer, Kirchner, & Kreuter, 2019; Rohr, Silber,
& Felderer, 2023). For surveys on the German population, the distribution of socio-demographic
characteristics among the respondents to a survey might, for example, be compared to o�icial statistics
like the Mikrozensus or to a high-quality survey of the German population like the ALLBUS. If the survey
respondents are similar to the general population, the risk of nonresponse bias is assumed to be low.
Benchmark comparisons thereby implicitly rely on the assumption that the survey estimate ˆ̄x is not
subject to bias apart from nonresponse. Other sources of bias like sampling or coverage error are
neglected. The advantage of benchmark comparisons is that no information on nonrespondents are
needed. However, the number of variables that can be compared against benchmarks is usually rather
limited. Usually, no benchmarks are available for the variables of interest Y .

Let ˆ̄x be the survey mean and x̄bench the population benchmark for the auxiliary variables. To be able
to compare nonresponse bias over variables and between surveys, the relative nonresponse bias for a
variable xj is estimated as1

\rel :Bias(x̄j) =
ˆ̄xj − x̄j bench
x̄j bench

: (7)

In practice, the di�erences between ˆ̄x and x̄bench will be non-zero due to random sampling variation.
Appropriate statistical tests can be performed to evaluate statistical significance of the di�erences (see
for example Eckman, Unangst, Dever, & Antoun, 2022; Felderer et al., 2019).

In practical applications, the relative biases are o�en estimated for a number of available auxiliary vari-
ables. All relative biases might be aggregated to one single measure that can be compared across surveys
or experimental subgroups of a survey. A commonly reported measure is the average absolute relative
bias (AARB) (see for example Cornesse, Felderer, Fikel, Krieger, & Blom, 2021; Friedel, Felderer, Krieger,
Cornesse, & Blom, 2023) which is given by the mean of the absolute relative biases. The absolute val-
ues are taken to make sure that negative and positive relative biases do not cancel each other out. For v
auxiliary variables the AARB is given by

\AARB =
1

v

vX
j=1

˛̨̨̨
x̄j − x̄benchj
x̄benchj

˛̨̨̨
(8)

with subscripts j = 1 : : : v indicating the j thX-variable. Relative biases can also be aggregated to median
absolute relative bias and the maximum absolute relative bias. These aggregated measures have the
advantage to reduce the findings for severalX-variables to one single value but they are not a multivariate
indicator in our sense as they do not account for the interplay of di�erent X-variables. As they do not
allow to identify the contribution of the individual characteristics, we recommend to not only analyse
the aggregate measures but also their single components.

The AARB is not standardized and its interpretation is only meaningful in comparison to relative biases
found in other surveys or for experimental subgroups of the same survey. In order to meaningfully com-
pare AARBs between surveys, one needs to make sure that the same set of auxiliary variables (that are

1For categorical variables, proportions are used instead of means.
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measured and coded in the same way) are included in the analysis. High nonresponse bias in the auxil-
iary variables might indicate a high risk of nonresponse bias in the variables of interest. If both kinds of
variables are not correlated, even high nonresponse bias in auxiliary variables is no indication of nonre-
sponse bias in the survey variables of interest.

Other measures that are based on benchmark comparisons are the Duncan dissimilarity index (for ex-
ample Bosnjak et al., 2018) and absolute di�erence or standardized absolute di�erence (for example
Peytcheva & Groves, 2009).

Comparison of respondents and nonrespondents on auxiliary variables

Usually,the number of survey variables that can be compared to o�icial statistics is very limited. In many
applications, however, auxiliary variablesX from the sample frame, paradata from the fieldwork process
(for example Krueger & West, 2014) or, in a panel context, survey information from previous waves are
available for all individuals who are invited to participate in a survey. Comparisons between respondents
and nonrespondents can be performed by comparing means and proportions and determining signifi-
cance using appropriate statistical tests.

Comparison of early and late respondents

A comparison of early or “easy-to-contact” respondents to late or “hard-to-contact” respondents is some-
times used to get an impression of the risk of nonresponse bias (see for example Green, 1991). Doing this,
the late respondents are assumed to be similar to nonrespondents. While this approach relies on strong
assumptions, it has the advantage that it can be performed on auxiliary variables as well as the survey
variables of interest. To receive information on nonrespondents, sometimes a nonresponse follow-up
survey (see for example Roberts et al., 2020) is conducted using a shortened questionnaire. The respon-
dents to the main survey are then compared to the respondents of the nonresponse follow-up survey
assuming that the latter are representative of all nonrespondents to the main survey.

Variation of subgroup response rates

The evaluation of the variation of subgroup response rates is a univariate indicator that follows the same
idea as the (multivariate) evaluation of the goodness of fit and nonresponse weights (see for example
Wagner, 2012). If di�erent subgroups (defined by the categories of a specific auxiliary variable) show dif-
ferent response rates, this is taken as an indication for an increased risk of nonresponse bias in the survey
variable of interest. For a categorical variable with c categories the subgroup response rates are given as
RRsub;c = nc

Nc
where nc is the number of respondents in category c andNc the number of sampled per-

sons in category c . RRsub is the vector of the subgroup response rates for all categories of a specific
variables. The variance of subgroup response rates can be estimated by:

ˆV ar(RRsub) =
1

N − 1

CX
c=1

Nc(
nc
Nc
− n

N
)2 (9)

where n
N is the survey’s response rate. The subgroup response rate does not require information on non-

respondents on an individual level but only sample (or population) proportions of the auxiliary variable.
To standardize subgroup response rates, the coe�icient of variation of the subgroup response rates (see
for example Nishimura, Wagner, & Elliott, 2016) can be calculated as
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ĈV (RRsub) =
ˆV ar(RRsub)

n=N
: (10)

Higher values of ĈV (RRsub) are taken as a higher risk of nonresponse bias. ˆV ar(RRsub) is only a useful
indicator ifX is associated with Y .

4. Illustration of use of nonresponse bias indicators

To illustrate the use of the measures described above, we apply them to synthetic data sets that are gen-
erated to match the three nonresponse mechanisms discussed in section 2.1. The approach was strongly
inspired by Nishimura et al. (2016). The details of the synthetic data example set up can be found in the
attached R-script. We create fiveX-variables and one Y -variable (Y1; Y2; Y3) for each mechanism. TheX-
variables are generated to match the distribution in the German population according to the Mikrozen-
sus 2019. The response mechanism roughly mimics typical findings for age, gender, education, household
size and German nationality. For example, sampled individuals who are highly educated participate more
o�en than the less educated ones. Lastly, a variable Z is generated that can be seen as an unobserved
variable that is related to Y1 and Y3. A random error term is added to the generation of all Y - variables
and response propensities to avoid perfect relations between them andX andZ.

For the separate cause model, the response propensity is generated to be a function of all X-variables
( = f (X1; : : : ; X5)) while Y1 is a function of oneZ-variable and does not depend on anyX (Y1 = f (Z)).

For the common cause model, the response propensity is again a function of allX-variables. The variable
Y2 is a function of three of the five X-variables (Y2 = f (X1; X2; X3)) which resemble gender, age and
education.

For the survey variable cause model, neither Y3 nor the response propensity depend on theX-variables.
Y3 depends on variableZ (Y3 = f (Z)) and the response propensity is associated with the survey variable
of interest ( = f (Y3)).

For each scenario, samples of size N = 2000 are generated with response rates of 50%. All individuals
who have a response propensity above the median response rate are considered respondents to the sur-
vey. As nonresponse depends on the same set of variables in the separate cause model example and the
common cause model example Y1 and Y2 can be interpreted as being collected in the same survey. The
variable Y3 is assumed to be from a di�erent survey with a di�erent response mechanism.

The example is kept very simple and relationships are, of course, more complex in reality. For example,
even in the survey variable cause model Y may depend on X. Moreover, many X-variables that a�ect 
are usually not observed and/or not known or show missing values.

4.1 Multivariate nonresponse bias indicators

Let us consider two scenarios. In our first scenario, we have information on all five socio-demographic
variables in our studies from the sample frame and use these information to conduct nonresponse bias
analysis. In our second and more realistic scenario, some variables that a�ect nonresponse are not avail-
able from the frame and we only have a subset of the socio-demographic variables, gender, age and
German citizenship, limiting our analysis to these variables.

To estimate multivariate nonresponse bias indicators, we run a logistic regression of the response indi-
cator (yes/no) on all available frame information in each scenario. We estimate the R-indicator using the
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predicted probabilities from the logistic regression and build nonresponse weights as the inverse of the
predicted probabilities. Table 1 shows the R-indicator, McFadden’s pseudoR2 from the logistic regression
and the variance of the nonresponse weights.

Table 1: Estimated multivariate nonresponse bias indicators for two scenarios characterized by di�erent
availability of auxiliary data.

indicators full variable set limited variable set
separate common survey variable separate common survey variable

cause cause cause cause cause cause
R-indicator 0.36 0.36 0.94 0.41 0.41 0.94
McFadden’sR2 0.35 0.35 0.00 0.29 0.29 0.00p

variance of nr weights 70.97 70.97 0.13 31.78 31.78 0.11

The measures in the first three columns make use of all variables that are part of the nonresponse process
for the separate cause model and the common cause model. The limited variable set used in the second
scenario does not include all relevant variables. None of the variables used in any scenario a�ect the
nonresponse process for the survey variable cause model.

The indicators need to be interpreted with caution and we must be aware which conclusions can be
drawn and which not. All these measures only indicate to what extent the distributions of theX-variables
in the survey correspond to those in the population. For the full variable set scenario, all indicators show
very low risk of nonrespnse bias in the survey variable cause model but high risk for the other two mod-
els. That is expected, as we know that the data was generated that way. We should, however, not naively
conclude that we have a generally low risk of nonresponse bias in this survey. Knowledge of the rela-
tionship of X and Y , e.g., empirical evidence from other studies or theoretical considerations can help
to judge whether to expect nonresponse bias in Y . If we, for example, know from other studies that the
Y variable is highly correlated to theX- variables (like it is the case for Y2), we would assume a high risk
of nonresponse bias in this variable of interest but not for a variable that is not related toX, like Y1 in the
same survey. In our example, Y3 is generated to not depend on theX-variables but to Y3 itself. Thus, the
indicators are not meaningful when it comes to the risk of nonresponse bias in Y3. Likewise, there can al-
ways exist unknown or unobserved auxiliary variables that are related to Y and cause nonresponse bias.
If these variables are not related to theX-variables that might capture parts of their e�ect, the high risk
of nonresponse bias can not be detected. This illustrates the limitations of these indicators: they sum-
marize the representation of di�erent population subgroups (based on theX-variables) but do not allow
to rule out e�ects of variables that are not part of the analysis, either because they can not be compared
to some benchmark or are not observed at all.

Comparing the full variable set scenario to the limited variable set scenario, we find all indicators to “im-
prove”: the R-indicators are higher whereas McFadden’sR2 and the variation of the nonresponse weights
are closer to zero. These findings show how the specification of the nonresponse model that is part of
these three measures influences the results. Interestingly, the mis-specified models in the limited vari-
able set scenario that excludes relevant auxiliary variables misleadingly indicates a lower risk of nonre-
sponse bias. This makes sense as leaving out relevant predictors in the nonresponse model decreases
the model fit and thus McFadden’sR2 and decreases the variation of the predicted values for the nonre-
sponse propensity. Again, the indicators can only be interpreted in relation to the specific X-variables.
We can never know for sure that there are no unobserved characteristics that are excluded from the es-
timation of the nonresponse bias indicator (like in the limited variable set scenario) that systematically
a�ect survey nonresponse.
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Both scenarios show that the survey variable cause model in our example exhibits higher representative-
ness (of theX-variables) than the other models. Finding that the indicators heavily depend on the model
specification, it is important to note that the indicators should only be compared between surveys if they
include the same set ofX-variables. Also, they should only be interpreted with respect to theX-variables
they make use of. In the full variable set we can draw conclusions about the surveys’ representativeness
with regard to gender, age, education, German citizenship and household size whereas in the limited
variable set our conclusions are limited to gender, age and German citizenship.

Table 2 shows the correlation between nonresponse weights and Y and the FMI in estimating ˆ̄y . We show
the results for the full information and limited information scenario described above. To estimate the
FMI, we impute Y using all X-variable values that are available in the respective scenario. We conduct
multiple imputations (m = 10) using predictive mean matching as implemented in the R package mice
(Van Buuren & Groothuis-Oudshoorn, 2011). The results are shown in Table 2.

Table 2: Estimated multivariate nonresponse bias indicators for two scenarios characterized by di�erent
availability of auxiliary data.

indicators full variable set limited variable set
separate common survey variable separate common survey variable

cause cause cause cause cause cause
correlation of weights and y 0.04 -0.25 0.02 0.04 0.03 0.03
FMI 0.80 0.31 0.81 0.90 0.92 0.92

Comparing the separate cause model and common cause model, we find that the correlation of weights
and Y correctly identifies a higher risk in nonresponse bias for Y in the common cause model for the full
variable set scenario. It does, however, not detect the high nonresponse bias in Y in the survey variable
cause model. This was expected as there is no relationship between theX-variables and Y for this model.
Consequently, findings are very similar for the survey variable cause model and the separate cause model
for whichX and Y are also not associated. Whereas for the separate cause model we are right to conclude
that there is only a low risk of nonresponse bias in Y we would be wrong in the survey variable cause
model. For the limited variable set scenario, the correlations are estimated to be of about the same size
for all of the three nonresponse models, failing to detect the high risk of nonresponse bias in the common
cause model. Again, the nonresponse bias indicators can only be interpreted in relation to theX-variables
they are built on and they are not able to detect a correlation of Y and  or of Y and unobserved X-
variables that are not part of the propensity model.

The FMI can be interpreted by comparing its value to the nonresponse rate. As Nishimura et al. (2016)
point out, the FMI is bounded by the nonresponse rate under the MAR model. Observing values that are
much higher than the nonresponse rate (50 % in our case) is an indication that the imputation model
is mis-specified. If the imputation model is correctly specified, the FMI should not be larger than about
0:5. The higher the correlation of Y andX, the stronger the FMI decreases towards zero. For the limited
variable set scenario we find all FMIs to be larger than 0:5 indicating that the models are mis-specified and
do not caputure allX-variables that relate to the response propensity. For the full variable set scenario,
the FMI is larger than 0:5 for the separate cause model and survey variable cause model. This again can be
explained by the fact thatX is not correlated with Y and usingX for the imputation for Y has no positive
e�ect on the between-imputation-variance of Y . As noted above, both models do not lead to data that
are missing at random and thus do not meet the assumptions of the FMI. We are not able to distinguish
between the separate cause and survey variable cause model based on the FMIs. Whereas for the survey
variable cause model we are right to conclude that we observe a high risk of nonresponse bias the large
FMI in the separate cause model is misleading. The FMI for the common cause model reflects the situation
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very well. It is lower than the nonresponse rate indicating correct model specification. Due to random
error in the generation of Y ,X and Y are not perfectly correlated and the FMI is not exactly zero.

The multivariate nonresponse bias indicators are useful measures for the representativeness of a sur-
vey regarding the specific variables they are built on. They do, however, not allow for an evaluation of
which variables are well represented and which are not. Most importantly, taking them as indicators for
the risk of nonresponse bias in Y might be very misleading. The representativeness of X can only be
used as an indicator for nonresponse bias in Y under the assumption thatX and Y are highly correlated
on the population level. This assumption usually cannot be tested. Only substantive knowledge on the
relationships betweenX and Y can help to evaluate whether the assumption holds.

Several indicators that allow for an evaluation of the risk of nonresponse bias on the variable level are
illustrated in the following section.

4.2 Univariate nonresponse bias indicators

Let us assume we know the means and proportions for the socio-demographics (X-variables) from o�i-
cial statistics such as the Mikrozensus. We can easily compare the survey estimates based on the respon-
dents and the population values from the Mikrozensus for the X-variables for the three nonresponse
models. We should be aware, however, that even for random sampling of the individuals, the survey es-
timates likely do not exactly match the population parameters by chance. Like in real applications, we
are not able to separate random sampling error from nonresponse error.

To be able to compare the magnitude of nonresponse bias between X-variables and di�erent surveys,
we compute the relative biases using benchmarks from o�icial statistics and the AARB (see Table 3). For
illustration, we assume that we also know the true distribution of Y which is usually unknow. This allows
us to estimate relative nonresponse bias in Y as well. The relative biases in X are the same for the sep-
arate cause model and the common cause model but di�er from the ones for the survey variable cause
model.

We can, for example, see that the younger age cohorts are under- and the older age cohorts are over-
represented for all surveys. The mis-representation is strongest for the individuals aged 16 to 29 years.
The AARB gives a summary of the biases and naturally shows the same trend as the indicators from
the previous section: the survey variable cause model shows the highest representativeness or, in other
words, lowest AARB for the socio-demographic variables under study.

In this example, we are able to evaluate bias in the Y -variables as well. The separate cause model and
common cause model examples are generated to be the same survey with di�erent Y -variables of in-
terest. We can see that the Y -variable in the separate cause model example is under-estimated to a very
small degree due to random sampling error whereas the Y -variable from the common cause model shows
an over-estimation of more than 5%. This shows that variables from the same survey can be a�ected
by nonresponse very di�erently depending on how they are related to the nonresponse mechanism. In
our example, nonresponse bias is highest for the Y -variable from the survey variable cause model. Even
though the survey was very representative for all X-variables, Y su�ers from severe nonresponse bias.
This example shows that a good/bad representation of X does not necessarily imply a good/bad repre-
sentation of Y . This example made use of the population information of Y which is usually not available.
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Table 3: Relative nonresponse bias (in percent) in estimated proportions of auxiliary variables and aver-
age absolute relative bias in the survey samples underlying di�erent response mechanisms.

variable separate common survey variable
cause cause cause

age 16-29 -68.57 -68.57 9.05
age 30-39 -4.71 -4.71 13.53
age 40-49 -7.06 -7.06 -0.59
age 50-59 15.91 15.91 -14.09
age 60+ 56.09 56.09 -4.35
female -3.67 -3.67 -4.29
low education -29.35 -29.35 -0.65
medium education -5.59 -5.59 -0.59
high education 31.43 31.43 1.14
household size 1 6.36 6.36 12.27
household size 2 3.68 3.68 3.16
household size 3 -1.89 -1.89 -5.95
household size 4 -6.36 -6.36 -5.00
German citizenship 12.64 12.64 -1.72
Y -2.26 5.70 18.91
AARB 18.09 18.09 5.45

5. Conclusion

Declining participation rates raise concerns of high nonresponse bias. However, as discussed in the pre-
vious sections, it is not so much the general willingness to participate that a�ects the risk of nonresponse
bias, but rather how di�erent this willingness is for di�erent population groups. Nonresponse bias arises
whenever respondents di�er from nonrespondents in the characteristic of interest. Within the same sur-
vey, statistics for some variables may be completely accurate and others may be heavily biased. If the
nonresponse mechanism depends on the variable of interest, estimates for this variable will be biased
no matter how well the other variables are represented.

Since usually nonresponse bias in the variables of interest cannot be measured directly, measures based
on auxiliary variables such as socio-demographic characteristics are used to estimate the risk of non-
response bias. In order to draw conclusions to the variable of interest it is necessary to use auxiliary
variables that are correlated to them. In addition to frame information, the collection of interviewer ob-
servations and paradata has shown to be useful to study nonresponse bias and to apply nonresponse
adjustments (see for example Krueger & West, 2014).

Indicators that in addition to the auxiliary variables incorporate the variables of interest can be very help-
ful if the data follow the common cause model. In case of the survey variable cause model or if the nonre-
sponse mechanism is mis-specified, however, they tend to be misleading.

All of the above indicators can provide information about the risk of nonresponse bias, but they have their
limitations. Their interpretation should always be guided by considerations of contextual relationships.
To get the most accurate picture of nonresponse bias, we highly recommend to use several indicators.
The estimation and visualization of many of the proposed nonresponse bias indicators are implemented
in the easy to use R package sampcompR (Rohr, 2023).

We propose to start with estimating the nonresponse model whenever auxiliary information is available
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for respondents and nonrespondents. Modelling nonresponse requires a clearly defined sample and a
response indicator that can be assigned to each unit of the sample. The model coe�icients provide in-
formation on which characteristics influence participation and in which direction. Estimated response
propensities can than be used to estimate several multivariate nonresponse bias indicators.

We propose to compare survey estimates to benchmarks from o�icial statistics on all available charac-
teristics. This is especially useful for all characteristics that are available for respondents only and are
thus not available for the nonresponse models. Note that the di�erences between survey estimates and
population benchmarks can only be attributed to nonresponse if the sample is drawn randomly from the
population (and design weights are used if applicable) and the measurement is assumed to be error-free.
Even if these assumptions are fulfilled, the survey estimate will randomly deviate from the population
benchmark due to sampling.
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